Differences between revisions 10 and 11
Revision 10 as of 2009-07-03 16:38:20
Size: 2371
Revision 11 as of 2009-07-03 16:39:05
Size: 2424
Deletions are marked like this. Additions are marked like this.
Line 36: Line 36:
Line 38: Line 39:
*Author: Kentaro Somiya
*Platform: Mathematica


Core IFO Model

The core IFO model will be a simulation model which describes the interferometric part of LCGT. Calculating the behavior of the electric fields inside the interferometer is the main task of this model. This model will also simulate radiation pressure forces from the electric fields to the mirrors in order to provide an interface with the mechanical system.

Analytical model



  • Author: Masaki Ando
  • Platform: Matlab

Default design in 2007(BRSE). This model was designed for TAC meeting held in 2005/5/23.


loopnoise2.55c for LCGT


  • Author: Osamu Miyakawa
  • Platform: Matlab

This is a set of scripts to calculate the loop noise for LCGT parameters running on Matlab using Optickle engines. It produces many usuful plots to compare LCGT optical configurations conveniently. Radiation pressure effects are implemented in all optical gain matrix, and the carrier vacuum are available form dark port, laser, pox, poy and attenuators (but the RF vacuum is not yet.). See attached readme.txt for more detail.

This version is designed to investigate Soto, Kokeyama, Kawazoe model discussed in 2004-2007 for loss less and symmetric case.

Noise Calculation

Mathematica files

Classical noise

BNS (example)

*Author: Kentaro Somiya *Platform: Mathematica

You need to run the classical-noise code first so that it saves the equation in your My Document folder. The BNS code exports the classical-noise equation and gives the optimal finesse and detune phase. Note that the SRM reflectivity is fixed in each BNS code. You need to copy this example file for rho088, rho090, etc. and change rho and the file names in the new codes. In each code, after you run it once, go back to 3.2.3 and change the number in Range"xx" so that it gives you True instead of False. This tells you the right ITM power transmittance T. Then you need to use this right T in 3.2.5 (manually). Then run the rest of the code so that it gives you the spectrum. The tendency of the SN against different T is saved in My Document as well. Running each rhoxx codes, you will get the contour plot of different rhos and Ts.

LCGT/subgroup/ifo/ISC/TaskList/CoreIFOModel (last edited 2009-10-01 00:56:37 by OsamuMiyakawa)