Size: 801
Comment:
|
Size: 3347
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
pythonを使ってframe fileのデータを解析するときの情報を日本語でメモしています。 | |
Line 4: | Line 3: |
世の中に便利なパッケージがたくさんあるのがpythonの強みでもあるが、調べ物をする際にあちこち回ることになるというデメリットにもなっている。<<BR>> また、[[https://gwpy.github.io/docs/stable/examples/index.html|GWpy本家のexamples]]は検索性がよくなく、答えを知らないと必要な情報になかなかたどり着けない。<<BR>> 日本語で書かれた資料もほとんどないので、とっつきにくい。 そこでこのwikiページでは、やりたいことベースで大まかに分類し、pythonを使ったframe fileデータ解析でよく使う情報を日本語でメモしていく。 {{{#!wiki caution '''注意''' python初心者が書いています。「とりあえずこう書くとコレができる」というメモの集まりなので、(動作確認はしているけど)間違っていたり、より効率的な書き方があるでしょう。 }}} |
|
Line 8: | Line 18: |
Line 9: | Line 21: |
* .gwf, .txt, .csv, .wav, ... | |
Line 11: | Line 22: |
* numpy, scipyなどのメモ * gwpyのTime SeriesやFrequency Seriesなどの計算小技 * [[KAGRA/Subgroups/PEM/PythonMemoJP/plot|Plot関連]] * Matplotlib, ... |
* [[KAGRA/Subgroups/PEM/PythonMemoJP/plot|Matplotlibでの描画関連]] |
Line 16: | Line 24: |
* [[KAGRA/Subgroups/PEM/PythonMemoJP/|]] | * [[KAGRA/Subgroups/PEM/PythonMemoJP/speedup|高速化の小技]] * [[KAGRA/Subgroups/PEM/Portable/GWpy_Chromebook|Google Colaboratoryを使う]] ---- == よく使うモジュールリスト == * ファイル操作など * glob * os * 数値計算関係 * numpy : 基本はコレ * scipy * datetime ; 時刻を扱う * iminuit : Fitするときに使う ([[https://hackmd.io/@tenoto/Skl_wArqD|参考]]) * probfit : Fitするときに使う * lmfit : Fitするときに使う * bottleneck * pandas : 表計算をしたり、csvファイルを読み書きしたり * 描画関係 * matplotlib : 基本はコレ * plotly : ブラウザ上で拡大縮小などがインタラクティブにできる * PyQt5 : matplotlibよりも高速で、リアルタイム描画に向いているらしい * 機械学習 * tensorflow * scikit-learn * 重力波関係 * GWpy : 基本はコレ * lalsuite : フレームファイルの読み書きに必要。直接使わなくてもインストール必須 * pycbc : CBC解析 (Matched filtering とか) * GWDetChar : DetChar解析 * GWSumm : サマリーページ * GWDataFind : 重力波データを引っ張ってくる * pyomicron : オミクロントリガーを使う * dttxml : diagguiのxmlファイルを読み込む * nds2utils * python-nds2-client * 天文関係 * astropy * 地球物理系 * geopandas : 位置情報入りの表計算や地図のplotなど (注意:igwn-py39を元に構築した環境には、依存性か何かのせいでインストールできない!) * pyprj : 地球上の距離計算 * obspy : 地震波解析 * オーディオ関係 * pysoundfile * playsound * python-sounddevice * wavio |
Python memo in Japanese
世の中に便利なパッケージがたくさんあるのがpythonの強みでもあるが、調べ物をする際にあちこち回ることになるというデメリットにもなっている。
また、GWpy本家のexamplesは検索性がよくなく、答えを知らないと必要な情報になかなかたどり着けない。
日本語で書かれた資料もほとんどないので、とっつきにくい。
そこでこのwikiページでは、やりたいことベースで大まかに分類し、pythonを使ったframe fileデータ解析でよく使う情報を日本語でメモしていく。
注意
python初心者が書いています。「とりあえずこう書くとコレができる」というメモの集まりなので、(動作確認はしているけど)間違っていたり、より効率的な書き方があるでしょう。
よく使うモジュールリスト
- ファイル操作など
- glob
- os
- 数値計算関係
- numpy : 基本はコレ
- scipy
- datetime ; 時刻を扱う
iminuit : Fitするときに使う (参考)
- probfit : Fitするときに使う
- lmfit : Fitするときに使う
- bottleneck
- pandas : 表計算をしたり、csvファイルを読み書きしたり
- 描画関係
- matplotlib : 基本はコレ
- plotly : ブラウザ上で拡大縮小などがインタラクティブにできる
PyQt5 : matplotlibよりも高速で、リアルタイム描画に向いているらしい
- 機械学習
- tensorflow
- scikit-learn
- 重力波関係
- GWpy : 基本はコレ
- lalsuite : フレームファイルの読み書きに必要。直接使わなくてもインストール必須
- pycbc : CBC解析 (Matched filtering とか)
GWDetChar : DetChar解析
- GWSumm : サマリーページ
- GWDataFind : 重力波データを引っ張ってくる
- pyomicron : オミクロントリガーを使う
- dttxml : diagguiのxmlファイルを読み込む
- nds2utils
- python-nds2-client
- 天文関係
- astropy
- 地球物理系
- geopandas : 位置情報入りの表計算や地図のplotなど (注意:igwn-py39を元に構築した環境には、依存性か何かのせいでインストールできない!)
- pyprj : 地球上の距離計算
- obspy : 地震波解析
- オーディオ関係
- pysoundfile
- playsound
- python-sounddevice
- wavio