Differences between revisions 48 and 77 (spanning 29 versions)
Revision 48 as of 2018-12-23 22:55:38
Size: 5785
Comment:
Revision 77 as of 2019-03-04 22:03:26
Size: 7761
Comment:
Deletions are marked like this. Additions are marked like this.
Line 3: Line 3:
<<TableOfContents(3)>>
Line 5: Line 6:
  * Sadakazu Haino(Chair), Chunglee Kim, Kentaro Komori, Yuta Michimura, Matteo Leonardi, Atsushi Nishizawa, Kentaro Somiya(PRDC chair)   * Sadakazu Haino(Chair), Chunglee Kim, Kentaro Komori, Matteo Leonardi, Yuta Michimura, Atsushi Nishizawa, Kentaro Somiya(PRDC chair)
Line 15: Line 16:
=== LIGO-Virgo white papers ===
 * LIGO Instrument science white paper (2017): [[https://dcc.ligo.org/public/0142/T1700231/003/T1700231-v3.pdf|LIGO-T1700231–v2]]
 * LIGO Instrument science white paper (2018): [[https://dcc.ligo.org/public/0151/T1800133/004/T1800133-instrument-science-white-v4.pdf|LIGO-T1800133–v3]]
<<Anchor(DraftWP)>>
=== Draft of white paper ===
 * Link to [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=9590|JGWdoc]]
 * Link to [[https://www.overleaf.com/project/5c091fbd8795b4614778100c|Overleaf]]
 * Link to [[https://www.dropbox.com/sh/ry8x2x5wco4xbxx/AAAy782OD9Mhbca7Cov0Ws5Oa?dl=0|Dropbox (backup)]]
Line 19: Line 22:
 * The LSC-Virgo White Paper on Gravitational Wave Data Analysis and Astrophysics (July 2017 edition): [[https://dcc.ligo.org/public/0142/T1700214/004/WP17.pdf|LIGO–T1700214-v4]] VIR-0435D-17
 * The LSC-Virgo White Paper on Gravitational Wave Data Analysis and Astrophysics (Summer 2018 edition): [[https://dcc.ligo.org/public/0150/T1800058/002/WP18.pdf|LIGO–T1800058-v2]] VIR-0119B-18


=== Draft of white paper ===
 * Link to Overleaf: https://www.overleaf.com/project/5c091fbd8795b4614778100c
 * Link to Dropbox (backup): https://www.dropbox.com/sh/ry8x2x5wco4xbxx/AAAy782OD9Mhbca7Cov0Ws5Oa?dl=0
<<Anchor(Meetings)>>
=== Meetings ===
 * [[KAGRA/KSC/FPC/Meetings/190108|2019/01/08]]
 * [[KAGRA/KSC/FPC/Meetings/190205|2019/02/05]]
 * [[KAGRA/KSC/FPC/Meetings/190308|2019/03/08]]
Line 29: Line 29:
<<Anchor(Science)>>
Line 37: Line 38:
     * intermediate mass-ratio binaries [Norichika Sago?]      * intermediate mass-ratio binaries [Norichika Sago]
Line 41: Line 42:
     * NS EOS and tidal deformation [Masaru Shibata]      * NS EOS and tidal effect [Masaru Shibata]
Line 56: Line 57:
     * burst signal [Sachiko Kuroyanagi]
     * stochastic background [Sachiko Kuroyanagi]
     * parameter estimation [Kipp Cannon?]
     * burst signal [Kipp Cannon]
     * stochastic background [Kipp Cannon]
     * parameter estimation [Kipp Cannon]
Line 60: Line 61:
     * inflation models [Jun'ichi Yokoyama?]
     * phase transition [Shinya Kanemura?]
     * inflation models [Sachiko Kuroyanagi]
     * phase transition [Mitsuru Kakizaki]
Line 72: Line 73:
     * GW lensing [Lijing Shao]
Line 77: Line 79:
<<Anchor(Technologies)>>
Line 78: Line 81:
  * High power laser (how much power? stability?) [Haino?]
  * Parametric instabilty vs power, mitigation schemes [Michimura? KYamamoto?]
  * High power laser (how much power? stability?) [Haino]
  * Parametric instabilty vs power, mitigation schemes [Michimura, KYamamoto]
Line 82: Line 85:
  * Mirror (mass, coating, absorption) [Hirose?]
  * Suspending larger mirror [Okutomi?]
  * Suspension design for suspension thermal noise reduction (upper stage masses, sapphire blades, ribbon design) [Tomaru?]
  * Mirror (mass, coating, absorption) [Hirose?, KYamamoto]
  * Suspending larger mirror [Okutomi? Aso?]
  * Suspension design for suspension thermal noise reduction (upper stage masses, sapphire blades, ribbon design) [KYamamoto, Tomaru?]
Line 86: Line 89:
  * Extreme RSE (high SRM reflectivity possible?) [Michimura?]   * Extreme RSE (high SRM reflectivity possible?) [Enomoto?]
Line 88: Line 91:
  * Newtonian noise cancellation [Nishizawa?]
  * QND, quantum locking [KNagano]
  * Newtonian noise cancellation [Nishizawa? Shimoda?]
  * Quantum locking [KNagano]
  * Silicon mass [Komori?]
  * 1550nm/2000nm laser [Li-Wei Wei?]
  * Suspension point interferometer [Aso?]
  * Vertical suspension point interferometer [Ando?]
  * Thermal compensation system (BS/PRMs)
  * Balanced homodyne detector
  * Low-loss output faraday isolator [Somiya?]
  * Suspension thermal noise cancellation using single loop wires
  * Khalili cavity [Somiya?]
  * EPR entanglement [Somiya?]
  * Phase camera
  * Double optical spring [Komori?]
  * Multi-carrier interferometer
  * Delay line
  * Local readout scheme
  * Intracavity squeezing
  * Intracavity signal amplifier
  * White light cavity
  * Speedmeter
  * Long SRC
  * Xylophone
Line 94: Line 118:
 * Study of new noise sources
  * Schumann resonance
  * Water gravity gradient noise
  * Acoustic gravity gradient noise
  * Thermal noise in non-equilibrium steady state
  * Gravity decoherence noise
<<Anchor(CurrentFacility)>>
Line 116: Line 147:
<<Anchor(Schedule)>>
Line 121: Line 153:
<<Anchor(LVWP)>>
=== LIGO-Virgo white papers ===
 * LIGO Instrument science white paper (2017): [[https://dcc.ligo.org/public/0142/T1700231/003/T1700231-v3.pdf|LIGO-T1700231–v2]]
 * LIGO Instrument science white paper (2018): [[https://dcc.ligo.org/public/0151/T1800133/004/T1800133-instrument-science-white-v4.pdf|LIGO-T1800133–v3]]

 * The LSC-Virgo White Paper on Gravitational Wave Data Analysis and Astrophysics (July 2017 edition): [[https://dcc.ligo.org/public/0142/T1700214/004/WP17.pdf|LIGO–T1700214-v4]] VIR-0435D-17
 * The LSC-Virgo White Paper on Gravitational Wave Data Analysis and Astrophysics (Summer 2018 edition): [[https://dcc.ligo.org/public/0150/T1800058/002/WP18.pdf|LIGO–T1800058-v2]] VIR-0119B-18

<<Anchor(References)>>
Line 123: Line 164:
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7038|Latest estimated sensitivity of KAGRA (v201708) *APPROVED*]]
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=9314|Document Tree for KAGRA Upgrade]]
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=9537|Example sensitivity curves for the KAGRA upgrade]]
 * [[https://arxiv.org/abs/1804.09894|Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector]]
 * [[https://git.ligo.org/gwinc|gwinc]]

Future Planning Committee (FPC) working wiki

Overview

  • FPC is approved under KSC in Dec/2018 with the following initial members:

    • Sadakazu Haino(Chair), Chunglee Kim, Kentaro Komori, Matteo Leonardi, Yuta Michimura, Atsushi Nishizawa, Kentaro Somiya(PRDC chair)
  • Any comments/questions/requests from anyone are much appreciated and can be sent to the dedicated Mailing List
    • ksc-fpc _at_ icrr.u-tokyo.ac.jp

Starting points

Draft of white paper

Meetings

White paper plan

  • Scientific motivation
    • Stellar-mass BBH
      • formation scenarios [Kohei Inayoshi]
      • population (parameter estimation) [Chunglee Kim]
      • host galaxy identification (sky localization) [Chunglee Kim]
    • Intermediate-mass BBH
      • formation scenarios [Kohei Inayoshi]
      • polulation (parameter estimation) [Chunglee Kim]
      • intermediate mass-ratio binaries [Norichika Sago]
    • BNS and BHNS
      • binary evolution [Chunglee Kim]
      • population (parameter estimation) [Chunglee Kim]
      • NS EOS and tidal effect [Masaru Shibata]
      • NS remnant [Masaru Shibata]
      • kilonova [Masaru Shibata]
      • short gamma-ray burst [Kunihito Ioka]
    • Accereting binaries
      • low-mass x-ray binaries [Albert Kong]
    • Isolated NS
      • pulsar ellipticity (continuous) [Yousuke Itoh]
      • pulsar glitches and magnetar flare [Yasufumi Kojima]
      • stellar oscillation [Hajime Sotani]
    • Supernova
      • explosion models [Kei Kotake]
      • distinguishing explosion models (parameter estimation) [Kazuhiro Hayama]
      • polarization [Kazuhiro Hayama]
    • Cosmic string
      • burst signal [Kipp Cannon]
      • stochastic background [Kipp Cannon]
      • parameter estimation [Kipp Cannon]
    • Stochastic background
      • inflation models [Sachiko Kuroyanagi]
      • phase transition [Mitsuru Kakizaki]
      • astrophysical background [??]
      • spectral shape (parameter estimation) [Sachiko Kuroyanagi]
    • Test of gravity
      • test of consistency with GR [Tjonnie G. F. Li]
      • generation mechanism [Takahiro Tanaka]
      • propagation effect [Atsushi Nishizawa]
      • polarization [Hiroki Takeda]
      • BH no-hair theorem [Hiroyuki Nakano]
    • Cosmology
      • Hubble constant measurement [Atsushi Nishizawa]
      • GW lensing [Lijing Shao]
    • Multimessenger
      • fast radio burst [Kazumi Kashiyama]
      • long gamma-ray burst [Ryo Yamazaki]
    • Others
      • BH echo [Takahiro Tanaka]

  • Survey of the current technologies (price and readiness)
    • High power laser (how much power? stability?) [Haino]
    • Parametric instabilty vs power, mitigation schemes [Michimura, KYamamoto]
    • Squeezing (squeezing level, losses) [Matteo, Eleonora]
    • Filter cavity (losses) [Matteo, Eleonora]
    • Mirror (mass, coating, absorption) [Hirose?, KYamamoto]
    • Suspending larger mirror [Okutomi? Aso?]
    • Suspension design for suspension thermal noise reduction (upper stage masses, sapphire blades, ribbon design) [KYamamoto, Tomaru?]
    • Improving heat conductivity of sapphire fibers [Tomaru?]
    • Extreme RSE (high SRM reflectivity possible?) [Enomoto?]
    • Technological noises at low frequencies [Michimura?]
    • Newtonian noise cancellation [Nishizawa? Shimoda?]
    • Quantum locking [KNagano]
    • Silicon mass [Komori?]
    • 1550nm/2000nm laser [Li-Wei Wei?]
    • Suspension point interferometer [Aso?]
    • Vertical suspension point interferometer [Ando?]
    • Thermal compensation system (BS/PRMs)
    • Balanced homodyne detector
    • Low-loss output faraday isolator [Somiya?]
    • Suspension thermal noise cancellation using single loop wires
    • Khalili cavity [Somiya?]
    • EPR entanglement [Somiya?]
    • Phase camera
    • Double optical spring [Komori?]
    • Multi-carrier interferometer
    • Delay line
    • Local readout scheme
    • Intracavity squeezing
    • Intracavity signal amplifier
    • White light cavity
    • Speedmeter
    • Long SRC
    • Xylophone
    • Technologies to accerelate commissioning work (e.g. machine learning for auto alignment)
    • Technologies to improve stability
    • Technologies to improve duty cycle
    • Technologies to reduce calibration error
  • Study of new noise sources
    • Schumann resonance
    • Water gravity gradient noise
    • Acoustic gravity gradient noise
    • Thermal noise in non-equilibrium steady state
    • Gravity decoherence noise

  • Status of the current facility
    • TUN
    • FCL
    • VAC
    • CRY [Tomaru]
    • VIS [Takahashi, Aso]
    • MIR [Hirose]
    • LAS [Mio]
    • IOO [Kokeyama, Somiya]
    • AOS [Akutsu]
    • ...
  • Limits of the current facility
    • Mirror size in cryostat [KYamamoto?]
    • Filter cavity length [Matteo, Eleonora]
    • Computing resources [Chunglee?]
  • Trade-off studies
  • Time scale of plans: near-term(more realistic) and longer-term(some dreams)
  • Back up plans
  • R&Ds to be done : input to the PRDC

  • Budget estimate
  • Project execution plan

Schedule for the white paper

  • Work in progress draft to be presented @ KIW in Feb 2019 : Feedbacks from Virgo
  • First draft to be circulated @ April 2019 F2F
  • Final version to be put for approval @ Aug 2019 F2F

LIGO-Virgo white papers

  • LIGO Instrument science white paper (2017): LIGO-T1700231–v2

  • LIGO Instrument science white paper (2018): LIGO-T1800133–v3

  • The LSC-Virgo White Paper on Gravitational Wave Data Analysis and Astrophysics (July 2017 edition): LIGO–T1700214-v4 VIR-0435D-17

  • The LSC-Virgo White Paper on Gravitational Wave Data Analysis and Astrophysics (Summer 2018 edition): LIGO–T1800058-v2 VIR-0119B-18

References

KAGRA/KSC/FPC (last edited 2022-11-01 22:48:21 by SadakazuHaino)